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The purpose of the research project "Multi-Disciplinary Optimization of Aeroservoelastic

Systems" in its third year (October 1991 to September 1992) was to continue the development

of new methods for efficient aeroservoelastic analysis and optimization. The main targets in

this year were to complete the development of analytical tools for the investigation of flutter

with large stiffness changes, to continue the work on efficient continuous gust response and

sensitivity derivatives, and to advance the techniques of calculating dynsmic loads with

control and unsteady aerodynamic effects.

An efficient and highly accurate mathematical model for time-domsin analysis of flut-

ter during which large structural changes occur was developed in cooperation with Carol

D. Wieseman of NASA Laugley. The model was based on the second-yesr work "Modal

Coordinates for Aeroelastic Analysis with Large Local StructuzM Variations" recently ac-

cepted for publication in the Journal of Aircraft. The flutter time simulation work, "Time

Simulation of Flutter with Large Stiffness Changes", was presented by Ms. Wieseman at

the 33rd Structures, Structural Dynamics and Materials Conference in Dallas, Texas, April

1992. The paper was also accepted for publication in the Journal of Aircraft.

The work on continuous gust response, together with Afie Zole, a Technion Master stu-
dent, has been completed. An abstract of the paper "Continuous Gust Response and Sen-

sitivity Derivatives Using State-Space Models" was submitted for presentation in the 33rd

Israel Annual Conference on Aviation and Astronautics, February 1993. The abstract is

given in Appendix A. A full paper will be shortly submitted for Journal publication. The

work extends the optimization modal to deal with continuous gust objectives in a way that

facilitates their inclusion in the efficient multi-disciplinary optimization scheme.

Currently under development is a works designed to extend the analysis and optimization

capabilities to loads and stress considerations. The work, together with Eyal Presente, a

Technion Master student, is on aircraft dynamic loads in response to impulsive and non-

impulsive excitation. The work extends the formulations of the mode-displacement and

summation-of-forces methods to include modes with significant local distortions, and load

modes. An abstract of the paper "Structural Dynamic Loads in Response to Impulsive

Exaltation", submitted for presentation in the International Forum on Aeroelasticlty and

Structural Dynamics 1993, Strasbourg, France, May 1993, is given in Appendix B.

Another work performed this year under the Grant was "Size-Reduction Techniques for

the Determination of Efficient Aeroservoelasti¢ Models _ given in Appendix C. The work will

be published as a Chapter in Academic Press Volume 54, '_Advancea in Control and Dgnamic

Systems".



Appendix A
CONTINUOUS GUST RESPONSE AND SENSITIVITY DERIVATIVES

USING STATE-SPACE MODELS

Arie Zole and Mordechay Karpel

Technion-Israel Institute of Technology

Haifa,Israel

INTRODUCTION

An atmospheric flight vehicle is exposed to air turbulence that causes time-varying aero-

dynamic loads. These continuous-gust loads, amplified by the aeroelastic response of the

vehicle, may result in critical structural design conditions. The response of the automatic

flight control system to structural vibrations may also play an important role. The gust re-

sponse is analyzed by aeroservoelastic models which include unsteady aerodynamic, control

and structural dynamics effects.

The gusts caused by air turbulence are defined in statistical terms by their power spectral

density (PSD) functions and root-mean-square (RMS) values. Aviation regulations define

the RMS gust velocity values for which the RMS responses over the entire structure should be

analyzed and substantiated. Classical frequency-domain methods 1 are used to calculate the

structural response by first calculating the response to sinusoidal gusts, and the associated

response PSD at many frequency points. Numerical integration is then used to calculate the

RMS response.

Modern aeroservoelastic modeling techniques, which are based on constant-coefficient,

time-domain, first-order (state-space) formulation 2, opened the way for a significantly more

efficient way to analyze continuous gust response. Augmentation of the aeroelastic states

by a gust fdter a, in a way that results in a linear system excited by white noise, facilitated

a direct solution for the RMS response. The main difficulty of the state-space modeling is

in the requirement for approximating the unsteady aerodynamic force coefficient matrices
by rational functions of the Laplace variable. The resulting model contains aerodynamic

states which represent the time lag in the development of the aerodynamic forces. The

minimum-state method 4 results in a relatively small number of aerodynamic states, which

yields efficient aeroservoelastic stability and gust response analyses.

The inclusion of gust response criteria in a simultaneous structural and control design

process may be beneficial to the aircraft performance and its structural integrity. The state-

space formulation facilitates analytical sensitivity derivatives of gust response parameters

with respect to various structural and control design variables. These derivatives allow the

efficient inclusion of gust response in the cost function of automated integrated optimization

schemes s along with other aeroservodastic criteria such as flutter, control effectiveness and

control stability margins.

The purposes of this paper are to apply the m;n;mnm-state modeling method to state-

space gust response modeling of realistic design cases, to model the gust filter in a way

that avoids numerical difficulties, to develop the associated gust response equations, to de-



velop expressions for analytic sensitivity derivatives, and to demonstrate the efficiency and

accuracy of the suggested modeling scheme in comparison with classical methods.

KEY EQUATIONS

Modal representation of the structural dynamics, rational approximation of the unsteady

aerodynamic coefficients, state-space realization of the control transfer functions and the

introduction of a modified gust filter yield the closed-loop state-space equation of motion

(_} = [A]{_}+ (B_}_ (1)

where the state vector include generalized structural displacements and velocities, and aero-

dynamic, control and gust states

w represents a white-noise process and {B,,} has a single non-zero term in the {za} row of

Eq. (1). Structural response and external loads can be defined by the output equation

{y} = [C]{_} (2)

Solution for the state covariance matrix [X] is obtained by solving the Lyapunov equation

[A] [X] + [X][A] r -- -{B_}{B_} T (3)

The mean square of a response parameter is

_ = [c_][x][c_]T (4)

where [C_] is a row in [C]. The computation of the sensitivity derivative of ay with respect
a Cto a design variable p starts with the definition of -_[A] and _.[ v] ( given in the paper for

various structural and control parameters). Differentiation of Lyapunov equation (3) yields

a Lyapunov equation for the derivatives of IX].

[A] N[X] + = -a_[A][X].. [X] [A] r (5)

Differentiation of Eq. (4) yields

a., _[x][c,] r_ = [c,] + 2_[c,][x][c_] r (6)

The same Schur decomposition of [A] can be used for all responses and their sensitivity
derivatives.

SELECTED RESULTS

The modeling method and the solution process are demonstrated with a twelve-mode

model of a transport aircraft at subsonic flight. The aircraft has one control surface and is



exposed to vertical contixtuous gust. The control system rel_rtes the control surface deflec-

tion to wing-tip acceleration through a second-order control law and a third-order actuator.

The generalized structural properties and the doublet-lattice unsteady aerodynamic data

base were calculated using the MSC/NASTRAN finite-element program. Minimum-state

aerodynamic approximations were performed using the MIST code 4. The state-space model

has 23 structural states (the heave displacement state is eliminated to avoid a zero root),

4 aerodynamic states, 5 control states and 3 Dryden gust states (with a low-pass filter to

avoid a noise term in the output equation).
Open-loop flutter and gust-response results are within 2% of those obtained by frequency-

domain methods. The same aerodynamic data base was used for the state-space and

frequency-domain solutions. The aerodynamic approximation (not required in the frequency-

domain solution) took about 7 cpu seconds on a VAX 9000 machine. One approximation is

used for numerous flutter, gust response and sensitivity derivative analyses. State-space cpu

times for flutter and a single gust response solution were 0.44 and 0.12 seconds respectively.

The cpu time for the respective frequency-domain solutions were about 15 times larger.

The variations of wing-tip acceleration and wing-root bending moment RMS responses

with the thickness of an additional plate near the wing root are shown in Figure 1. The
expected values are based on sensitivity derivatives. It is clear that the the sensitivity

derivatives are accurate. The additional computation time required to calculate a derivative

is less than that required to calculate the response itself because both computations are

performed with the same matrix decomposition.

It can be concluded that the proposed modeling and solution procedures are suitable for

inclusion in efficient automated design procedures with numerous response parameters and

design variables (structural and control).

REFERENCES

.

.

.

,

_°

Bisplinghoff, R. L., H. Ashley, and R. L. Halfman, "Aeroelasticity," Addison-Weseley,

Cambridge, Mass., 1955.

Roger, K. L., "Airplane Math Modeling and Active Aeroelastic Control Design,"

AGARD-CP-228, 4.1-4.11(1977).

Mukhopadhyay, V., J. R. Newsome and I. Abel, "A Method for Obtaining Reduced-

Order Control Laws for High-Order Systems Using Optimization Techniques," NASA

TP-187e (1981).

Karpel, M. and Hoadley, S.T., "Physically Weighted Approximations of Unsteady

Aerodynamic Forces Using the Minimum-State Method", NASA TP-3025 (1991).

Karpel, M., _Multidisciplinary Optlmlv.ation of Aeroservoelastic Systems," presented

at the Air Force/NASA Symposium on Multidisciplinary Analysis and Optimization,

San Francisco, CA, Sept. 1990.

4



kcceleration Iq.M.S Vs. 1--st Plate Thickness

I I 5

.A. I I 0

¢,I

t_

_o o

_ 9 5

"-4
o

g o

8 5
2 4- 6 8 100

tl (ram)

_fing Root Bending Moment R.M.S Vs. 1-st Plate Thickness

28000

v

27000

26000

25000

24000

23000

t, (,-,,_)

I



Appendix B

Structural Dynamic Loads in Response to Impulsive Excitation

Mordechay Karpel and Eyal Presente

Technion - Israel Institute of Technology

Halfa, Israel

The dynamic response of aerospace structures to impulsive excitation such as store ejec-

tion and hard landing often yield critical design load cases. Time simulation of the dyna_mic

response is usually based on the modal approach where a subset of low-frequency normal

modes serve as generalized coordinates. The dynamic load distributions may be calculated

by either the mode-displacement (MD) method, which is based on the generalized displace-

ments, or the summation-of-forces (SOF) method, which sums the inertial, aerodynamic

and excitation forces. While MD loads are easier to formulate and analyze , SOF loads are

usually more reliable and require a smaller number of modes. The proposed paper presents

a comparative investigation of the MD and SOF loads due to local impulsive excitation, and

a new method which improves the accuracy and efficiency of the MD analysis dramatically.

The new method is based on application of large fictitious masses at the excitation points
when the modes axe calculated. The fictitious masses cause local distortions which are re-

tained in the modal information when the masses axe removed in the response analysis. The

local distortions allow local response effects, which axe shown to be essential for accurate

loads. Fictitious masses axe also used to generate artificial load modes which yield simple and

e_cient expressions for integrated shear forces, bending moments and torsion moments at

vaxious wing sections. The time-domain models include unsteady aerodynamic effects which

are based on the minimum-state method for rational approximation of the aerodynamic force

coefficient matrices. The time simulation is based on analytic expressions.

The methods axe demonstrated for store ejection loads on a high aspect ratio wing.

Various response cases with and without aerodynamics demonstrate the MD and SOF loads

versus number of modes taken into account. Typical 10-mode MD integrated section-load

errors without fictitious masses are 10% at wing sections far from the excitation point and

30% at sections close to the excitation point. SOF errors in these cases are about 0.25 of the

MD errors. With a single fictitious mass of about one third of the total _ring mass loading

the excitation point, the 10-mode MD errors are reduced to less than 3% at all the wing
sections. SOF errors with fictitious masses are similar to the fictitious-mass MD errors. The

new method allows high-accuracy dynamic load computations with the simple MD method

which does not require the complicated evaluation of uaxsteady
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